浅谈半导体激光器及其应用
【作者】网站采编
【关键词】
【摘要】:摘要 : 近十几年来半导体激光器发展迅速,已成为世界上发展最快的一门激光技术。由于半导体激光器的一些特点,使得它目前在各个领域中应用非常广泛,受到世界各国的高度重视。摘要:
近十几年来半导体激光器发展迅速,已成为世界上发展最快的一门激光技术。由于半导体激光器的一些特点,使得它目前在各个领域中应用非常广泛,受到世界各国的高度重视。本文简述了半导体激光器的概念及其工作原理和发展历史,介绍了半导体激光器的重要特征,列出了半导体激光器当前的各种应用,对半导体激光器的发展趋势进行了预测。
关键词:半导体激光器、激光媒质、载流子、单异质结、pn结。
自1962年世界上第一台半导体激光器发明问世以来,半导体激光器发生了巨大的变化,极大地推动了其他科学技术的发展,被认为是二十世纪人类最伟大的发明之一。近十几年来,半导体激光器的发展更为迅速,已成为世界上发展最快的一门激光技术。半导体激光器的应用范围覆盖了整个光电子学领域,已成为当今光电子科学的核心技术。由于半导体激光器的体积小、结构简单、输入能量低、寿命较长、易于调制以及价格较低廉等优点,使得它目前在光电子领域中应用非常广泛,已受到世界各国的高度重视。
一、半导体激光器
半导体激光器是以直接带隙半导体材料构成的 Pn 结或 Pin 结为工作物质的一种小型化激光器。半导体激光工作物质有几十种,目前已制成激光器的半导体材料有砷化镓、砷化铟、锑化铟、硫化镉、碲化镉、硒化铅、碲化铅、铝镓砷、铟磷砷等。半导体激光器的激励方式主要有三种,即电注入式 、光泵式和高能电子束激励式。绝大多数半导体激光器的激励方式是电注入,即给 Pn 结加正向电压,以使在结平面区域产生受激发射 ,也就是说是个正向偏置的二极管 。因此半导体激光器又称为半导体激光二极管。对半导体来说,由于电子是在各能带之间进行跃迁 ,而不是在分立的能级之间跃迁,所以跃迁能量不是个确定值, 这使得半导体激光器的输出波长展布在一个很宽的范围上。它们所发出的波长在0.3~34μm之间。其波长范围决定于所用材料的能带间隙 ,最常见的是AlGaAs双异质结激光器,其输出波长为750~890nm。
激光器结构示意图
半导体激光器制作技术经历了由扩散法到液相外延法(LPE), 气相外延法(VPE),分子束外延法(MBE),MOCVD 方法(金属有机化合物汽相淀积),化学束外延(CBE)以及它们的各种结合型等多种工艺。半导体激光器最大的缺点是:激光性能受温度影响大,光束的发散角较大(一般在几度到20度之间),所以在方向性、单色性和相干性等方面较差。但随着科学技术的迅速发展, 半导体激光器的研究正向纵深方向推进 ,半导体激光器的性能在不断地提高。以半导体激光器为核心的半导体光电子技术在 21 世纪的信息社会中将取得更大的进展,发挥更大的作用。
二、半导体激光器的工作原理
半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件 :
1、增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带 ,因此在半导体中要实现粒子数反转,必须在两个能带区域之间 ,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现, 将电子从能量较低的价带激发到能量较高的导带中去 。当处于粒子数反转状态的大量电子与空穴复合时 ,便产生受激发射作用。
2、要实际获得相干受激辐射 ,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜。对F-p 腔(法布里-珀罗腔)半导体激光器可以很方便地利用晶体的与 p-n结平面相垂直的自然解理面构成F-p腔。
3、为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场。这就必须要有足够强的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即要求必须满足一定的电流阀值条件。当激光器达到阀值时,具有特定波长的光就能在腔内谐振并被放大,最后形成激光而连续地输出。可见在半导体激光器中,电子和空穴的偶极子跃迁是基本的光发射和光放大过程。对于新型半导体激光器而言,人们目前公认量子阱是半导体激光器发展的根本动力。量子线和量子点能否充分利用量子效应的课题已延至本世纪,科学家们已尝试用自组织结构在各种材料中制作量子点,而GaInN 量子点已用于半导体激光器。
文章来源:《化工学报》 网址: http://www.hgxbzz.cn/zonghexinwen/2020/0910/349.html
上一篇:浙江工业大学工业催化简介
下一篇:下午两点名师课堂:清华大学张强老师为您解构